
Lab 5 Report 1

Lab 5 Report
Tags

TEAM 6 - Rulan Gu, Bradyn Lenning, Aimee Liu, Sruthi Parthasarathi, Tyrin-Ian
Todd

6.4200 Robotics: Science and Systems

4.10.2024

LAB 5 REPORT: Monte Carlo Localization
(MCL)
I. Introduction
Author: Rulan Gu

In autonomous vehicles, location estimation is a very useful feature when
attempting to navigate through a mapped environment. Autonomous cars, for
example, use a GPS system to know where they are in the real world, which
enables them to plan routes to a location and anticipate upcoming obstacles and
turns that cameras or sensors wouldn’t be able to detect. Thus, implementing a
location estimation feature would greatly contribute to our overall goal of
designing an autonomous car.

So far, we have implemented some autonomous routines for our robot: it can park
at a cone and follow walls and orange lines. However, it still can’t navigate through
a known area (such as the State basement). In Lab 5, our goal was to implement
an algorithm to estimate the robot’s current position on the map (in our case, a
map of the State basement) in order to enable future features such as path
planning.

Lab 5 Report 2

To accomplish our goal, we designed a Monte Carlo Localization (MCL) algorithm,
which averages a probability distribution of particles that represent possible
locations of the robot to find the estimated location. This algorithm is composed of
three main parts:

Motion model: Calculates the next set of particles (where the robot might be
next) based on the robot’s odometry and previous set of particles.

Sensor model: Uses laser scan data to calculate the probability of the robot
being at each particle.

Particle filter:

Updates particles when motion model is updated

Resamples particles based on the probabilities calculated in sensor model

Each time particles is updated by either model, publishes the new
estimated robot pose, which is the average of all the particles.

In our implementation, we first initialize a particle cloud based around the robot’s
initial position. Then, the particle filter runs repeatedly, starting with the initial
particle cloud and updating estimated pose each time the motion or sensor
models update.

II. Technical Approach
Author: Aimee Liu

This section details the methods used to develop a working Monte Carlo
Localization, or particle filter, using a motion model and sensor model to update
the particle positions and determine the probability of each position. This particle
filter is then implemented into our physical robot car in order to capture a real-
time representation of the robot’s location on a map as it drives around the
basement of the MIT Stata Center.

Errors compound quickly when the robot loses track of its location — therefore, to
maintain the robustness of the robot’s representation on the map, each
component of the designed model must be optimized for accuracy and speed.

A. Motion Model

Lab 5 Report 3

Author: Aimee Liu

As the robot drives about in its environment, its detected location must change
along with its movement. This process can be implemented with a motion model,
which uses the sensed change in position, or odometry, of the robot to update its
position on the map. In Monte Carlo Localization, the robot is represented as an
array of particles representing potential positions, so the motion model must
update the position of each particle with some defined noise to capture the true
pose.

Updating Position with Transformation Matrices

One of the simplest ways to update the position of an object with its odometry is
by using transformation matrices, which can be derived from the object’s pose
vector, ﻿, as represented by (1).

Here, ﻿ and ﻿ represent the object’s 2D coordinates and ﻿ represents its
orientation. This pose vector can be used to create a transformation matrix ﻿,
through formula, (2).

We can use this method to construct the transformation matrix of the object at
timestep ﻿, ﻿, and the odometry, ﻿, in order to find the updated
location of the object at timestep ﻿, ﻿, using formula (3).

From, ﻿, we can extract entries ﻿, and ﻿, to get ﻿, ﻿,
﻿, and ﻿, from which we can also get and ﻿ for the next

pose.

x

x = [x,y, θ]T (1)

x y θ

T

T = ​ ​ =[
R

0
p

1
] ​ ​ ​ ​ ​

cos(θ)
sin(θ)

0

− sin(θ)
cos(θ)

0

x

y

1
(2)

k − 1 T ​x ​k−1 T ​Δx

k T ​x ​k

T ​ =x ​k
T ​T ​x ​k−1 Δx (3)

T ​x ​k
(1, 3), (2, 3), (2, 1) (1, 1) x y

sin(θ) cos(θ) θ = atan(​)cos(θ
sin(θ)

Lab 5 Report 4

Adding Noise to the Odometry

Due to various inaccuracies from sensors and the environment, our robot may
never be able to identify its exact position and orientation on a map. Thus, it is
instead represented by an array of particles which show its possible locations on
the map. These particles are updated to move with odometry input, but the
estimated odometry received by the robot’s sensors is not often precise.
Therefore, noise drawn from a normal distribution centered around this received
estimate must be added to spread the particles enough to capture the true
odometry.

This noise must be carefully tuned so that the particles are capable of converging
to the true odometry while retaining as much information from the estimate as
possible. As demonstrated by Fig. 1, a low spread would be too densely packed in
one location to capture the true odometry if the sensor odometry is not accurate
enough and a high spread would be too far apart to consistently find or get close
to the true odometry. A good spread well encompasses the true odometry, with
multiple particles within the vicinity that can get as close to the true odometry as
possible.

The optimal spread we chose which met the criteria was ﻿, ﻿, and
﻿.

Fig. 1. The optimal spread is between the low and high spread, where the particles are able to
consistently encompass and get close to the true odometry with its variance. The robot is

represented by the black box, the particles are represented by the red dots, and the true
odometry is represented by the blue dot. In the depiction of a Low Spread, the particles are too
densely packed in one location, and therefore too far from the true odometry to converge. In the

depiction of a High Spread, the particles are too far apart to accurately find the true odometry
and converge. The optimal spread would best be used to converge to the true odometry.

ϵ ​ =x 0.3 ϵ ​ =y 0.3
ϵ ​ =θ 0.005

Lab 5 Report 5

Synthesis: Updating Each Particle with Noisy Odometry

For every timestep, each of the ﻿ particles representing the robot’s position is
updated to its next pose using an odometry with added noise using the
transformation matrix method described earlier in this section. However, this may
become computationally inefficient. To improve the speed of our model, all N
noisy odometry vectors are created at once as a 3xN matrix and each
computation is performed only once as an N-sized array of all the particles. This
ensures that instead of each particle being updated one-by-one in series, the
particles are all updated simultaneously in parallel, greatly reducing the
computation time of the model.

This motion model constructs a spread of particle that consistently encompasses
the true odometry to accurately predict the next position of the robot on the map,
and is optimized to be quick and computationally efficient to keep up with the car.

B. Sensor Model
Author: Sruthi Parthasarathi

The motion model therefore gives us a space of possible locations for the car, but
what we actually require is something more — while all of these locations are
possible, they are not equally likely. Therefore, what we truly desire is a probability
distribution across that space.

Particle Likelihoods

In order to do this, we start by asking ourselves the following: given a scan
received in live time from the robot, how likely is the robot to have the pose of a
given particle? Answering this allows us to determine an updated probability
distribution for the true location of the robot from the current probability
distribution, which is represented by the samples in the particle cloud.

This probability is proportional to the conditional probability of observing the scan
given the pose of the particle— since the particle probabilities are normalized in
later steps, we compute this quantity instead for each of the particles in the cloud

N

Lab 5 Report 6

and absorb the constant of proportionality into the normalization constant, shown
in (4).

Each individual scan data’s probability is given by the following formula, (5), with
﻿’s chosen to add to 1, and probability values as defined in (6), (7), (8), and (9).

For a particle ﻿ and scan range ﻿, ﻿ is the particle’s position, ﻿ is the map, and
 is the true distance for that scan data point.

Eliminating Repetitive Computations

Once we choose appropriate values for the alpha parameters, we can directly
compute ﻿ for each particle. However, this process becomes
computationally expensive very quickly when processing scans from the car in
real time.

P(p ​∣z ​) ∝k 1,...,n P(z ​∣p ​) =1,...,n k ​P(z ​∣p ​)
i=1

∏
n

i k (4)

α

P(z ​∣p ​) =i k α ​p ​ +hit hit α ​p ​ +short short α ​p ​ +max max α p ​rand rand (5)

p ​(z ​∣x ​,m) =hit i k ​ ​{
η ​ exp(− ​)

​2πσ2
1

2σ2
(z ​−d)i

2

0

if 0 ≤ z ​ ≤ z ​i max

otherwise
(6)

p ​(z ​∣x ​,m) =short i k ​ ​ ​

d

2
{

1 − ​

d
z ​i

0
if 0 ≤ z ​ ≤ d and d = 0i 
otherwise

(7)

p ​(z ​∣x ​,m) =max i k ​ ​{
​

ϵ
1

0
if z ​ − ϵ ≤ z ​ ≤ z ​max i max

otherwise
(8)

p ​(z ​∣x ​,m) =rand i k ​ ​ ​

d

2
{

1 − ​d
z ​i

0
if 0 ≤ z ​ ≤ d and d = 0i 
otherwise

(9)

p ​k z ​i x ​i m

d

P(z ​∣p)1,...,k

Lab 5 Report 7

To combat this, we trade some accuracy for speed by storing a table of
precomputed probabilities. Note that each probability only requires knowing the
corresponding measured distance ﻿ and the ground truth ﻿, and is unaffected by
choice of units (changes in the distribution due to scaling are accounted for by the
standard deviation). Therefore, our table stores probabilities for all pairs ﻿
where the two parameters are integers and range from ﻿ pixels to ﻿ pixels. As
the scale from the real world to the pixels is fixed, the robot can simply use the
scaling factor to convert its measurements to pixels, round to the nearest integer,
and index into the table accordingly rather than repeatedly evaluating the
functions above.

Fig. 2. The precomputed sensor model for pre-chosen alpha values. Rather than compute
probabilities for each particle in real-time as the sensor sends data, it is more computationally

efficient to discretize and precompute the values beforehand and pull these values when
needed.

z d

(z,d)
0 200

Lab 5 Report 8

And this is precisely what the robot does. By downsampling the laser scans to
additionally reduce computational overhead, the sensor model calculates the
likelihood values for each particle in the cloud, which the particle filter can then
normalize to transform the space of possible positions into an actual probability
distribution for the ground truth pose.

Edited by Aimee Liu

C. Particles Filter
Author: Tyrin Todd

The particles filter integrates the sensor model and the motion model to get a
predicted pose. On a high level, it follows a 4 step process to achieve this.

1. Get an initial distribution of particles based on ground ground truth data.

2. Use laser scan and sensor model to update particle distribution

3. Calculate new particles using motion model and predicted odometry

4. Each time particles is updated, publish an average pose

Step 1: Initialize particles

Initializing the particles is fairly straightforward. The robot always has access to
some ground truth pose, therefore we can use a normal distribution centered at
the ground truth pose with a variance, ﻿, for the initial particle values, as
demonstrated by Fig. 2. We decided to use a variance of 0.1 because it generated
a satisfactory and wide spread of particles around the robot.

σ

Lab 5 Report 9

Fig. 3. Gaussian Distribution shows how different particle values (x,y,theta) are
normally distributed by frequency.

Step 2: Update particle distribution based on laser scan

The next step involves adjusting the particle distribution based on incoming LiDAR
data. Both the particles and the laser scan are processed through the sensor
model, as described in Section 2.B., which generates a list of probabilities for
each particle's accuracy. These probabilities are then used to resample particles,
ensuring that particles with higher probabilities are represented more frequently
than those with lower probabilities.

Step 3: Update particle distribution based on odometry

In step 3, the current odometry data is calculated. Then, the motion model,
described in Section 2.A., is applied to the current particle distribution and
odometry, yielding a new particle distribution for the next timestep. The odometry
calculation involves converting continuous-time velocity, ﻿, measurements into
their displacement counterparts by multiplying them by ﻿, the change in time to
find the change in the ﻿, ﻿, and ﻿ positions; ﻿, ﻿, and ﻿ respectively; as shown
in (10).

Fig. 3. Gaussian Distribution shows how different particle values (x,y,theta) are normally
distributed by frequency.

v

dt

x y θ dx dy dθ

Lab 5 Report 10

There were multiple options to get velocity in this equation, such as using the
current velocity or the previous. To take both velocities into account, we decided
to use the average of the two velocity to calculate odometry for an updated
formula, (11).

Step 4: Update pose

Every time the particles are updated an average must be calculated.
Unfortunately, this is not trivial as it seems. As described in the lab write up, “an
average could pick a very unlikely pose between two modes” [1]. For example if
the data were to look like Fig. 4, the algorithm inaccurately predicts our pose at
the red triangle which has a low probability distribution and is therefore likely
inaccurate. Our model is almost certain the robot is not there.

dx = v ​ ∗x dt

dy = v ​ ∗y dt

dθ = v ​ ∗θ dt (10)

dx = (v ​ −x v ​)/2 ∗x0 dt

dy = (v ​ −y v ​)/2 ∗y0 dt

dθ = (v ​ −θ v ​)/2 ∗θ0 dt (11)

Lab 5 Report 11

Instead a better approach would be to split the data set into “clusters”. The biggest
cluster will correspond to an area that our model is the most confident the robot is
currently located in. Then we can take the average of this cluster to calculate the
pose. As you can see in Fig.5, the predicted position is located in an area where
the model has high confidence (The cluster with the most particles).

Fig. 4. Improved predicted position using mode clustering. The dots are now grouped into
different colored clusters. The algorithm chooses the cluster with the most particles, in green,
and uses the mean of cluster, resulting in an improved prediction of where the robot may be, as
there is a high probability distribution at its location.

Lab 5 Report 12

This procedure creates a robust particle filter that can accurately estimate the
location of the robot on a map, being less susceptible to outliers and errors in the
sensor data, and quickly update due to the reduced computation time of the
motion and sensor models. The success of the particle filter in simulation is
evaluated in Section 3.A.

Edited by Aimee Liu

D. Robot Implementation
Author: Aimee Liu

In order to implement the particle filter in the physical robot, we must change the
parameter values used for the robot to instead use the physical robot parameters.
The topics the robot reads for the particle filter is changed to read from the real
robot’s LiDAR scan and odometry. In addition, we must also reverse the directions
of the ﻿, ﻿, and ﻿ axes since the robot views these values in the opposite
direction. Performing these two changes prepares the particle filter to be used in
the real world.

Fig. 5. Improved predicted position using mode clustering. The dots are now grouped into
different colored clusters. The algorithm chooses the cluster with the most particles, in green,
and uses the mean of cluster, resulting in an improved prediction of where the robot may be, as
there is a high probability distribution at its location.

x y θ

Lab 5 Report 13

However, before the translation from simulation to the real world may not always
be very exact, as there is more noise and sensor errors that may arise on the
physical robot that we typically don’t need to be concerned with on the simulation.
Therefore, more fine tuning is necessary for the variances in the motion model or
clustering in the particle filter. Despite this, our original values tuned to the
simulation data still worked well on the physical robot and did not need as much
adjustment, so our values remained relatively the same. The success of the
particle filter in the robot is evaluated in Section 3.B.

III. Experimental Evaluation
Author: Aimee Liu

This section evaluates the robustness of our model in both simulation and reality.
With the particle filter completed and implemented in the robot, it is important to
verify the accuracy of our algorithm in tracking the robot’s position on a map. To
do this, we tested the particle filter on both the simulation and physical car using a
predetermined map of the MIT Stata basement. From this we can use different
methods to evaluate the effectiveness of our algorithm both qualitatively and
quantitatively.

A. Performance in Simulation
Author: Bradyn, Ty

An advantage of operating in simulation is that the ground truth for the position of
the robot is known. This allows for testing the accuracy of the localization
algorithm. The distance from the localization algorithm’s expected position is
compared to the true position of the robot to represent the error and plotted over
time. We can see that the error is higher during times with higher velocity. Though
the error went up during the middle of the movement, it is promising that the error
goes back down to near zero once the robot comes to a stop, showing that the
algorithm can converge back onto the correct solution, which is demonstrated in
Fig. 6.

Lab 5 Report 14

Fig. 6. Error between localization position estimate and ground truth. The x axis
represents time with the y axis being the L2 norm of the (x, y) values for each.

For our model to be robust the particles must remain well dispersed. Convergence
of the particles leaves the model unable to cover enough area to be flexible to
error. Similarly, divergence leaves the model too general and unable to focus on
poses that matter. To track the how dispersed the particles were and how fast the
model is converging we used the variance as shown in Fig. 7.

Fig. 7. Variance over time in simulation. On the left you see a big spike in the
variance and then it gradually converges to a stable value ~0.1 on the right. The x
axis represents time and the y axis represents variance.

B. Performance in the Real World
Author: Bradyn, Ty

In order to get our localization algorithm working on the robot, we had to make a
few changes to the params.yaml file in order to make everything publish to the
correct topics. After debugging issues with axes, the localization algorithm was

Lab 5 Report 15

working. An initial guess was given for the position of the robot in RVIZ.
Immediately, we saw the pose of the best guess change slightly. After testing with
poor initial estimates, we saw that the algorithm would move the best guess to a
more reasonable location. This demonstrates an insensitivity to small errors in
initial guesses for the pose, as shown in Fig. 8.

Fig. 8. Side by side of video of robot driving in Stata basement and localization
running in RVIZ. Note how well the two correlate with each other besides the
small time lag.

Once the initial position stabilized, we began using teleop to control the robot.
Despite the lag in the localization algorithm's output, it maintained a stable and
reasonable pose most of the time. Issues did arise in scenarios like navigating
through the narrow space near the lab entrance and in cluttered areas.
Nevertheless, it was encouraging to observe that the estimated pose did not
worsen over time during regular driving.

Using teleop mode we were also able to test the variance, the results of which are
shown in Fig. 9. Similar to the variance in Section 3.A, it starts out very high when
the particles are initially dispersed then it quickly collapses to a stable value. The
stable variance in the real world and in simulation are almost the same which tells
us that our particles are converging properly on hardware.

Lab 5 Report 16

Fig. 9. Variance over time in physical robot. The following graph shows variance
over time as the physical robot drives in the MIT Stata basement. It starts with a
huge spike in variance during initialization then quickly converges to ~0.1 and
remains there throughout the run. The x axis represents time and the y axis
represents variance.

IV. Conclusion
Author: Rulan Gu

This paper presents our implementation for location estimation of our autonomous
robot. Our robot is now capable of estimating where it is on a map of the Stata
basement. To do this, we averaged a cloud of particles representing possible
robot locations to get its estimated location. We updated our particle cloud by
using odometry to calculate the next position of the particles and by using laser
scan data to calculate the probability of the robot being at each particle. In
simulation, the particle cloud was accurate to the robot’s true location while also
maintaining a reasonable variance. In the real world, we were able to qualitatively

Lab 5 Report 17

observe that the robot’s location estimation was accurate based on the estimated
pose on the Stata basement map.

Further work can still be done on evaluating the accuracy of the robot’s real world
performance quantitatively. One way to do this would be to run the wall-following
algorithm, which was designed previously, and the MCL algorithm at the same
time and see if the MCL algorithm accurately estimates the distance from the wall.
Additionally, we noticed that the particle cloud seems to lag at high speeds, which
could be due to the models not updating frequently enough to keep up or
excessive computations being done. On longer stretches with similar walls (such
as long straight hallways), the more uniform nature of the laser scan data also
seemed to cause the particle resampling to be ineffective.

Overall, our location estimation algorithm has been implemented successfully.
This useful feature will enable us to implement features such as path planning in
the future since we can now find our robot’s location on the map.

Lessons Learned
Each member of the team contributed heavily to the success of the project. As a
result, we each learned various lessons in both the technical and communicative
aspects of the lab.

Author: Rulan Gu

This lab taught me how to use probability to figure out the location of a robot on
the map. I was able to learn about a very interesting localization algorithm. The lab
was very challenging and I honestly wish we were given a bit more time to do it,
but it also taught me how much we can get done as a team in just a week.

Author: Bradyn Lenning

This lab taught me a lot about how effective a team can be when work is
distributed well. We all got our parts working well, but unsurprisingly integration
was challenging. Eventually we got everything working together though! It was
also interesting learning about how much precomputing can speed up a program.

Lab 5 Report 18

Author: Aimee Liu

This lab taught me much about probability and how to use it to predict motion. I
was able to practice my skills in transformations and mathematically solving for
next states with matrices.

I also learned to take initiative, make plans, and delegate tasks to meet deadlines.
Organization, consistency, and frequent communication greatly improves the
workflow of the team.

Author: Sruthi Parthasarathi

I particularly enjoyed this lab because a large part of designing our systems in
simulation required us to be thoughtful about increasing robustness to errors in
the real world, rather than accounting for them after integration with the robot.

I also gained more experience debugging with the hardware, and we collectively
learned to delegate tasks in a way that aligned with the interests and strengths of
the team members.

Author: Tyrin Todd

During this lab I enjoyed learning about how to think about error and randomness
in robotics. I also thought it was very interesting that this was the first lab where
latency is a factor and during our implementation we had to learn how to make the
tradeoff between latency and accuracy.

References
[1] “Lab 5: Monte Carlo Localization (MCL)” Accessed: Apr. 10, 2024. [Online].
Available: https://github.com/mit-rss/localization

https://github.com/mit-rss/localization

